Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 1928, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317640

RESUMO

How rapidly natural selection sorts genome-wide standing genetic variation during adaptation remains largely unstudied experimentally. Here, we present a genomic release-recapture experiment using paired threespine stickleback fish populations adapted to selectively different lake and stream habitats. First, we use pooled whole-genome sequence data from the original populations to identify hundreds of candidate genome regions likely under divergent selection between these habitats. Next, we generate F2 hybrids from the same lake-stream population pair in the laboratory and release thousands of juveniles into a natural stream habitat. Comparing the individuals surviving one year of stream selection to a reference sample of F2 hybrids allows us to detect frequency shifts across the candidate regions toward the genetic variants typical of the stream population-an experimental outcome consistent with polygenic directional selection. Our study reveals that adaptation in nature can be detected as a genome-wide signal over just a single generation.


Assuntos
Genoma , Smegmamorpha/genética , Smegmamorpha/fisiologia , Adaptação Fisiológica/genética , Alelos , Animais , Biologia Computacional , Ecossistema , Evolução Molecular , Feminino , Genética Populacional , Lagos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Rios , Seleção Genética
2.
Evol Lett ; 3(1): 28-42, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30788140

RESUMO

Genomic studies of parallel (or convergent) evolution often compare multiple populations diverged into two ecologically different habitats to search for loci repeatedly involved in adaptation. Because the shared ancestor of these populations is generally unavailable, the source of the alleles at adaptation loci, and the direction in which their frequencies were shifted during evolution, remain elusive. To shed light on these issues, we here use multiple populations of threespine stickleback fish adapted to two different types of derived freshwater habitats-basic and acidic lakes on the island of North Uist, Outer Hebrides, Scotland-and the present-day proxy of their marine ancestor. In a first step, we combine genome-wide pooled sequencing and targeted individual-level sequencing to demonstrate that ecological and phenotypic parallelism in basic-acidic divergence is reflected by genomic parallelism in dozens of genome regions. Exploiting data from the ancestor, we next show that the acidic populations, residing in ecologically more extreme derived habitats, have adapted by accumulating alleles rare in the ancestor, whereas the basic populations have retained alleles common in the ancestor. Genomic responses to selection are thus predictable from the ecological difference of each derived habitat type from the ancestral one. This asymmetric sorting of standing genetic variation at loci important to basic-acidic divergence has further resulted in more numerous selective sweeps in the acidic populations. Finally, our data suggest that the maintenance in marine fish of standing variation important to adaptive basic-acidic differentiation does not require extensive hybridization between the marine and freshwater populations. Overall, our study reveals striking genome-wide determinism in both the loci involved in parallel divergence, and in the direction in which alleles at these loci have been selected.

4.
Nat Commun ; 6: 8767, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26556609

RESUMO

Populations occurring in similar habitats and displaying similar phenotypes are increasingly used to explore parallel evolution at the molecular level. This generally ignores the possibility that parallel evolution can be mimicked by the fragmentation of an ancestral population followed by genetic exchange with ecologically different populations. Here we demonstrate such an ecological vicariance scenario in multiple stream populations of threespine stickleback fish divergent from a single adjacent lake population. On the basis of demographic and population genomic analyses, we infer the initial spread of a stream-adapted ancestor followed by the emergence of a lake-adapted population, that selective sweeps have occurred mainly in the lake population, that adaptive lake-stream divergence is maintained in the face of gene flow from the lake into the streams, and that this divergence involves major inversion polymorphisms also important to marine-freshwater stickleback divergence. Overall, our study highlights the need for a robust understanding of the demographic and selective history in evolutionary investigations.


Assuntos
Ecossistema , Genômica , Smegmamorpha/genética , Adaptação Fisiológica/genética , Animais , Variação Genética , Lagos , Desequilíbrio de Ligação , Compostos Organofosforados , Filogenia , Compostos de Piridínio
5.
J Comp Physiol B ; 185(5): 559-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25921796

RESUMO

The mean retention times (MRT) of solute or particles in the gastrointestinal tract and the forestomach (FS) are crucial determinants of digestive physiology in herbivores. Besides ruminants, camelids are the only herbivores that have evolved rumination as an obligatory physiological process consisting of repeated mastication of large food particles, which requires a particle sorting mechanism in the FS. Differences between camelids and ruminants have hardly been investigated so far. In this study we measured MRTs of solute and differently sized particles (2, 10, and 20 mm) and the ratio of large-to-small particle MRT, i.e. the selectivity factors (SF(10/2mm), SF(20/2mm), SF(20/10mm)), in three camelid species: alpacas (Vicugna pacos), llamas (Llama glama), and Bactrian camels (Camelus bactrianus). The camelid data were compared with literature data from ruminants and non-ruminant foregut fermenters (NRFF). Camelids and ruminants both had higher SF(10/2mm)FS than NRFF, suggesting convergence in the function of the FS sorting mechanism in contrast to NRFF, in which such a sorting mechanism is absent. The SF(20/10mm)FS did not differ between ruminants and camelids, indicating that there is a particle size threshold of about 1 cm in both suborders above which particle retention is not increased. Camelids did not differ from ruminants in MRT(2mm)FS, MRTsoluteFS, and the ratio MRT(2mm)FS/MRTsoluteFS, but they were more similar to 'cattle-' than to 'moose-type' ruminants. Camelids had higher SF(10/2mm)FS and higher SF(20/2mm)FS than ruminants, indicating a potentially slower particle sorting in camelids than in ruminants, with larger particles being retained longer in relation to small particles.


Assuntos
Camelídeos Americanos/fisiologia , Digestão/fisiologia , Trânsito Gastrointestinal/fisiologia , Herbivoria/fisiologia , Ruminantes/fisiologia , Estômago/fisiologia , Análise de Variância , Animais , Fermentação , Conteúdo Gastrointestinal , Modelos Biológicos , Tamanho da Partícula , Especificidade da Espécie , Fatores de Tempo
6.
PLoS One ; 9(4): e94363, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718604

RESUMO

Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg⁻¹ d⁻¹) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg⁻¹ d⁻¹). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg⁻¹ in camelids vs. 86.2±12.1 L kg⁻¹ in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels.


Assuntos
Camelídeos Americanos/metabolismo , Metano/metabolismo , Animais , Tamanho Corporal , Peso Corporal , Dieta , Digestão , Alimentos
7.
Evolution ; 68(6): 1792-805, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24571250

RESUMO

Advances in genomic techniques are greatly facilitating the study of molecular signatures of selection in diverging natural populations. Connecting these signatures to phenotypes under selection remains challenging, but benefits from dissections of the genetic architecture of adaptive divergence. We here perform quantitative trait locus (QTL) mapping using 488 F2 individuals and 2011 single nucleotide polymorphisms (SNPs) to explore the genetic architecture of skeletal divergence in a lake-stream stickleback system from Central Europe. We find QTLs for gill raker, snout, and head length, vertebral number, and the extent of lateral plating (plate number and height). Although two large-effect loci emerge, QTL effect sizes are generally small. Examining the neighborhood of the QTL-linked SNPs identifies several genes involved in bone formation, which emerge as strong candidate genes for skeletal evolution. Finally, we use SNP data from the natural source populations to demonstrate that some SNPs linked to QTLs in our cross also exhibit striking allele frequency differences in the wild, suggesting a causal role of these QTLs in adaptive population divergence. Our study paves the way for comparative analyses across other (lake-stream) stickleback populations, and for functional investigations of the candidate genes.


Assuntos
Osso e Ossos/anatomia & histologia , Evolução Molecular , Especiação Genética , Smegmamorpha/genética , Animais , Feminino , Proteínas de Peixes/genética , Frequência do Gene , Lagos , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Rios , Smegmamorpha/anatomia & histologia
8.
Mol Ecol ; 22(11): 3014-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23601112

RESUMO

Heterogeneity in recombination rate may strongly influence genome evolution and entail methodological challenges to genomic investigation. Nevertheless, a solid understanding of these issues awaits detailed information across a broad range of taxa. Based on 282 F(2) individuals and 1872 single nucleotide polymorphisms, we characterize recombination in the threespine stickleback fish genome. We find an average genome-wide recombination rate of 3.11 cm/Mb. Crossover frequencies are dramatically elevated in the chromosome peripheries as compared to the centres, and are consistent with one obligate crossover per chromosome (but not chromosome arm). Along the sex chromosome, we show that recombination is restricted to a small pseudoautosomal domain of c. 2 Mb, spanning only 10% of that chromosome. Comparing female to male RAD sequence coverage allows us to identify two discrete levels of degeneration on the Y chromosome, one of these 'evolutionary strata' coinciding with a previously inferred inverted region. Using polymorphism data from two young (<10 000 years old) ecologically diverged lake-stream population pairs, we demonstrate that recombination rate correlates with both the magnitude of allele frequency shifts between populations and levels of genetic diversity within populations. These associations reflect genome-wide heterogeneity in the influence of selection on linked sites. We further find a strong relationship between recombination rate and GC content, possibly driven by GC-biased gene conversion. Overall, we highlight that heterogeneity in recombination rate has profound consequences on genome evolution and deserves wider recognition in marker-based genomic analyses.


Assuntos
Evolução Biológica , Recombinação Genética , Smegmamorpha/genética , Animais , Composição de Bases , Mapeamento Cromossômico , Feminino , Frequência do Gene , Marcadores Genéticos , Variação Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Lagos , Masculino , Polimorfismo de Nucleotídeo Único , Rios
9.
PLoS One ; 7(12): e50620, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226528

RESUMO

Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily annual life cycle. This divergence is paralleled by a striking and consistent reduction in body size and fecundity in stream fish relative to lake fish. Stomach content analysis suggests that life history divergence might reflect a genetic or plastic response to pelagic versus benthic foraging modes in the lake and the streams. Microsatellite and mitochondrial markers further reveal that life history shifts in the different streams have occurred independently following the colonization by Lake Constance stickleback, and indicate the presence of strong barriers to gene flow across at least some of the lake-stream habitat transitions. Given that body size is known to strongly influence stickleback mating behavior, these barriers might well be related to life history divergence.


Assuntos
Smegmamorpha/fisiologia , Animais , Tamanho Corporal , Europa (Continente) , Água Doce , Variação Genética , Fenótipo , Smegmamorpha/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...